

Radiomics in Sickle Cell Disease

Speaker: Raffaella Colombatti, AO Padova

Protect young minds before the damage is done: Al in SCD

Artificial intelligence aims

- Aim 1) Omics-based classification and prognosis of SCD
 - to develop personalized predictive models for patients with SCD through integration of comprehensive genomic information
- □ Aim 2) Al model to predict risk scores and time of ocurrence for:
 - Recurrent Vaso Occlusive Crisis
 - Acute chest syndrome
 - Cerebral Silent Infarcts
 - Stroke (<20%)
 - Renal disease (<20%)
 - Hepatic failure (<20%)
- Aim 3) Al based radiomics for imaging diagnosis of cerebral silent infarct
- □ Aim 4) Development of AI models for synthetic data generation Augmentation
 - Increase categories e.g. stroke
 - External control arms in clinical trials

clinical

Specific AIMS

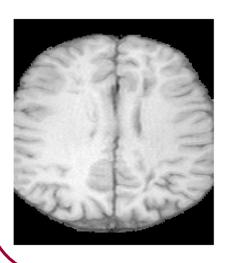
1) IDENTIFY SCI AND
DISTINGUISH IT FROM OTHER
LESION

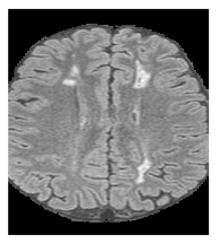
2) PREDICTION OF RISK OF DEVELOPING SCI IN THE FUTURE

Al based radiomics for imaging diagnosis of cerebral silent infart (CSI)

MRI Exam Composition

- T1 Weighted
- FLAIR (3D or 2D Axial)





1. Anonymized MRI Dataset preparation (2022)

- 541 MRIs
- 225 ABNORMAL REPORT (Cerebral Silent Infarct)
- 70% PEDIATRIC
- 7 centers
 - O NA, MO, TO, PD, GE Italy
 - VHIR Barcelona
 - UMC Amsterdam
- Philips 1.5 T (n.2), Siemens 1.5 T and 3 T (n.2), GE 3T (n.3)

Train

Test

Train

2. Implemented Pipeline to define and train the algorithm on MRI (2022-2023)

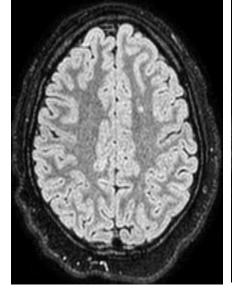
NEURORADIOLOGIST

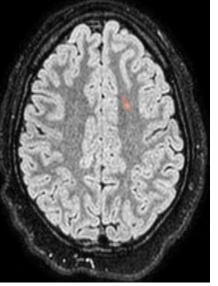
AI EXPERTS

Image without label Image with label

First semi automatic SCI IDENTIFICATION with the algorithm -3 deep learning models (pre-processing – WMH segmentation – post processing) in a subset

> **TRAINING** on a 1st set of MRIs

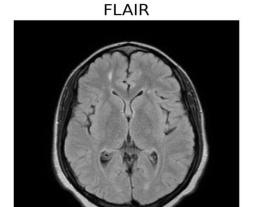




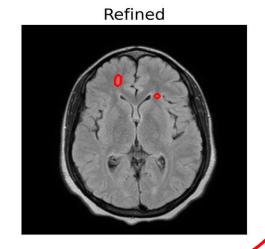
REFINING SEGMENTATION manually (NR) : second training of NEURAL NETWORK with «correct labeling»

LABELING OF each single MRI exam after the algorithm identified the SCI

3. Testing the algorithm on a different set of MRIs (2023-2024)



Results



- □ The images approved, were used to increase the dataset to retrain the model.
 The retraining part used the Marconi100 supercomputer kindly provided by CINECA.
- ☐ Testing on a different dataset from the one that was used for training
- □ Blind review of a sample of MRIs by 3 neuroradiologists to check for consistency in diagnosis and categorization of lesions (Padova, Barcelona, Amsterdam)

Automated Identification of Silent Cerebral Infarcts in Sickle Cell Disease: A Multicenter European Study Reflecting Real-World Variability

Riccardo Biondi¹, Maria Paola Boaro², Nicolas Biondini³, Anna Collado Gilbert⁴, Escudiero Fernandez JM⁵, Valeria Pinto⁶, Nicola Romano⁷, Vincenzo Voi^{8,9}, Giovan Battista Ferrero⁸, Maddalena Casale¹⁰, Mario Cirillo¹¹, Gian Luca Forni⁶, Giulia Reggiani², Silverio Perrotta¹⁰, María del Mar Mañú Pereira¹², Sara Reidel¹², Santiago Zazo¹³, Mariane De Montalembert¹⁴, Bart J. Biemont¹⁵, Pablo Bartolucci¹⁶, Eduard Van Beers¹⁷, Federico Alvarez¹⁸, Francesco Cremonesi^{19,20}, Cesare Rollo²¹, Tiziana Sanavia²¹, Piero Fariselli²¹, Gastone Castellani^{3,22}, Renzo Manara²³, Raffaella Colombatti²

Manuscript will be submitted next week

4.Preliminary evaluation of correlation of clinical/ematological parameters to MRIs results (2024-2025)

Federated Learning for SCD real data to predict Silent Cerebral Infarction

Binary target data:

presence/absence of SCI, completely defined by means of the real MRI outcomes.

Input data:

- Clinical variables: ALT, AST, direct, indirect and total bilirubin, creatinine, ferritin, GB, LDH, urea
- Physical parameters: blood pressure, oxygen saturation, weight, height, heart rate
- Time intervals: days corresponding to the date the values were recorded and the date of SCI

Federated Learning environment with small datasets:

Node1 27 samples Node2 15 samples

Node3 10 samples Test 13 samples

Federated Learning model:

Logistic Regression predicts presence/absence of SCI, with class balance and L2-penalty It meets the simplicity requirements for the initial platform tests.

Experimenting Federated AI Models for Hematological Diseases

```
 \begin{array}{c} \text{Luciana Carota}^{1[0000-0002-9217-4600]}, \, \text{Francesco Casadei}^{2[0009-0006-0789-546X]}, \\ \text{Gianluca Asti}^{3[0009-0006-9078-6482]}, \, \text{Davide Piscia}^{4[0000-0002-0468-0408]}, \\ \text{Patricia A. Apellániz}^{5[0000-0002-8604-9758]}, \, \text{Saw} \\ \text{D'Amico}^{3[0000-0003-1877-8497]}, \, \text{Riccardo Biondi}^{2[0000-0002-86]} \\ \text{Sala}^{1[0000-0003-4031-4648]}, \, \text{Nono S.C. Merleau}^{5[0000-0003-3150-van Deventer}^{6[0000-]}, \, \text{Raffaella Colombatti}^{7[0000-0001-9797-0]} \\ \text{Mezzalira}^{7[0000-0003-0486-0342]}, \, \text{Stefano Polizzi}^{1[0000-0002-\xi]} \\ \text{Peluso}^{1[0000-0003-1924-1093]}, \, \text{Cesare Rollo}^{8[0000-0001-6093-Sanavia}^{8[0000-0003-3288-0631]}, \, \text{Piero Fariselli}^{8[0000-0003-1811-Zazo}^{5[0000-0001-973-7927]}, \, \text{Juan Parras}^{5[0000-0002-7028-3179} \\ \text{Porta}^{3[0000-0002-6915-5970]}, \, \text{Federico Alvarez}^{5[0000-0001-7400-9591]}, \, \text{Gastone} \\ \text{Castellani}^{1,10[0000-0003-4892-925X]}, \, \text{and Enrico} \\ \text{Giampieri}^{1,10[0000-0003-2269-2338]} \\ \end{array}
```


1) The identification model of silent infarct lesions:

- □ Clinical Decision Support System (CDSS) = will reduce diagnosis time especially in non-expert centers and reduce diagnostic errors.
- □ It will improve the monitoring of the child to detect neurocognitive deterioration early, thus applying interventions early and preventively, different strategies (e.g. neurocognitive therapy, school reinforcement...)

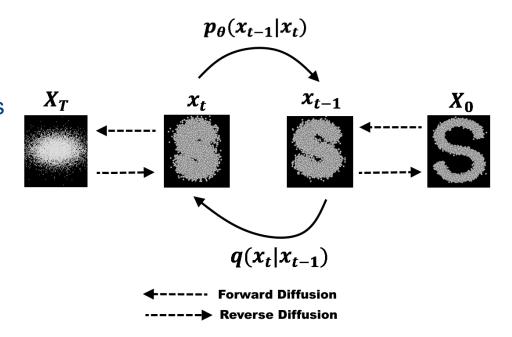
2) The predictive risk score would represent a significant improvement in patient stratification

- would improve clinical decision-making regarding bone marrow transplantation/gene therapy or new disease-modifying therapies
- would help personalize and adjust monitoring and prevention strategies for chronic organ damage.

Synthetic Images Generation-State of the Art

- High-quality and photorealistic image outputs
- Capable of generating diverse and creative visuals
- Strong performance on complex prompts and fine details

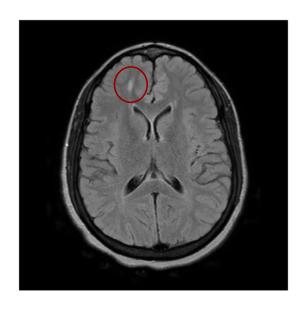
- Computationally expensive and slow to generate images
- Requires large datasets and resources for training
- May produce biased or inappropriate content without safeguards



Khader, F., Mueller-Franzes, G., Arasteh, S. T., Han, T., Haarburger, C., Schulze-Hagen, M., ... & Truhn, D. (2022). Medical Diffusion--Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. arXiv preprint arXiv:2211.03364.

Sickle Cell Disease

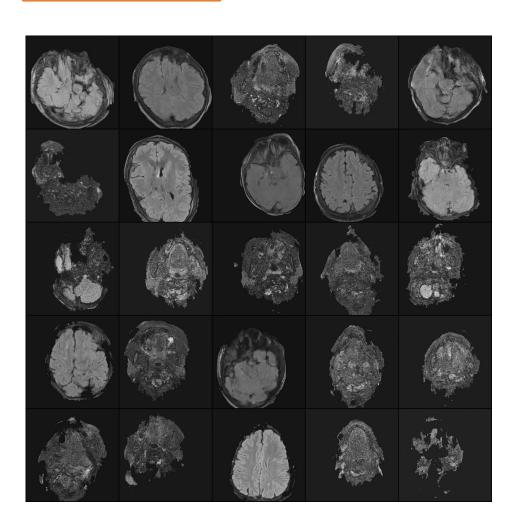
FLAIR and T1 MRI Exams with presence of Silent Cerebral Infarction. Extraction of radiomic features from the lesion areas



Outline

- Generate and Segment synthetic FLAIR and T1W images
- Generate directly synthetic radiomic features data

Results and Next Step



Current Work

- 2D FLAIR Generated Samples
- No Mask Generation
- No Accurate Evaluation

Next Steps

- Extend from 2D to 3D generation
- Silent Cerebral Inferction mask Generation
- Accurate Synthetic Data Validation

UNPD:

Maria Paola Boaro Giulia Reggiani Elisabetta Mezzalira Renzo Manara Silvia Valeggia

UNIBO:

Gastone Castellani Riccardo Biondi Nicolas Biondini Luciana Carota

Thanks to the MRI Group

Torino Orbassano, Genova Galliera, Napoli Vanvitelli, Barcellona VHIR, Amsterdam-Utrecht, Paris

THANK YOU!

Hematological Diseases (ERN EuroBloodNet)

